Bevölkerungskontinuität in der Donauebene

Er meint damit, dass der genetische Abstand zu slawischen Völkern gering ist. Angesichts der historischen Abläufe auf dem Balkan und der Verflechtung der Rumänen mit slawischen Bevölkerungsgruppen ist das nur schwer vorstellbar. Allerdings zeigt auch das mir vorliegende Dendrogramm den gleichen Sachverhalt.

Da slawische Völker durch ihre ähnliche Sprache definiert werden ist die Aussagekraft dieser Aussage genau welche.
 
Da slawische Völker durch ihre ähnliche Sprache definiert werden ist die Aussagekraft dieser Aussage genau welche.

Ich habe mich oben leider vertan. Natürlich muss es heißen, dass der genetische Abstand der Rumänen zu slawischen Völkern größer ist, als der zu den Griechen.

Bei diesen Dendrogrammen geht es lediglich um genetische Marker, aus denen möglicherweise Wanderwege oder Abstammungsverhältnisse abgelesen werden können. Hierarchische Clusteranalyse ? Wikipedia

Es gibt also Distanz- und Ähnlichkeitsmerkmale, was nichts mit ethnischen Identitäten oder Sprachen zu tun hat. Sprachen vererben sich bekanntlich nicht. ;)
 
Ich habe mich oben leider vertan. Natürlich muss es heißen, dass der genetische Abstand der Rumänen zu slawischen Völkern größer ist, als der zu den Griechen.

;)

Was heißt slawische Völker wenn es da darum geht, dann sind die Südslawen (um die geht es ja) nach allen Studien genetisch ähnlicher mit Rumänen und Griechen als mit Russen oder Polen.
 
Was heißt slawische Völker wenn es da darum geht, dann sind die Südslawen (um die geht es ja) nach allen Studien genetisch ähnlicher mit Rumänen und Griechen als mit Russen oder Polen.

Das mir vorliegende Dendrogramm zeigt einen sehr geringen genetischen Abstand zwischen Rumänen und Griechen. Zu Slawen ist dieser Abstand größer. Das mag daran liegen, dass sich die Rumänen aus einer altbalkanischen Restbevölkerung herausbildeten, die lange vor den Slawen ansässig war. Das wird deutlich dokumentiert durch die romanische Sprache der Rumänen inmitten einer slawischen Bevölkerung.
 
Europe has witnessed several changes in archaeological cultures since anatomically modern humans displaced the Neandertal population 30,000 to 40,000 years ago (1, 2). Palaeolithic hunter-gatherers survived the Last Glacial Maximum (LGM) about 25,000 years ago in southern and eastern refugia (3) and resettled central Europe after the retreat of the ice sheets. With the end of the Ice Age at ~9600 B.C.E., their Mesolithic descendants or successors had recolonized large parts of the deglaciated northern latitudes (4, 5). From around 6400 B.C.E., the hunter-gatherer way of life gave way to farming cultures in a transition known as the Neolithic Revolution (6). The extent to which this important cultural transition was mediated by the arrival of new peoples, and the degree of Mesolithic and early Neolithic ancestry in Europeans today, have been debated for more than a century (710). To address these questions directly, we obtained mitochondrial DNA (mtDNA) types from 22 central and northern European post-LGM hunter-gatherer skeletal remains (Fig. 1) and compared 20 of these (those for which full sequence information was available) to homologous mtDNA sequences from 25 early farmers (11, 12) and 484 modern Europeans from the same geographic region (13). Our ancient sample spans a period from circa (ca.) 13,400 to 2300 B.C.E. and includes bones from Hohler Fels in the Ach valley (Late Upper Paleolithic) and Hohlenstein-Stadel in the Lone valley (Mesolithic). Extensive precautions were taken to ensure sequence authenticity (14), including extracting independent samples from different skeletal locations of the same individuals and examining remains only from high latitudes or cave sites with good biomolecular preservation.
 
An analysis of the molecular variance (15) showed that our early farmers and hunter-gatherers were from two well-differentiated populations; the among-populations proportion of genetic variation (FST) = 0.163, P < 10−6. To put this value into perspective, we compared a range of modern human populations, randomly sampling 20 individuals from each. The maximum FST value in all comparisons among eight modern European samples was 0.0327, and among 13 modern European, Middle Eastern, Indian, Chinese, Papua New Guinean, and Australian samples it was 0.133 (14). We also found that our modern European sample was significantly different from the early farmer (FST = 0.0580, P = 10−5) and hunter-gatherer (FST = 0.0858, P < 10−6) samples. To test whether these genetic differences can be explained under the null hypothesis of population continuity alone, we performed coalescent simulations across a wide range of ancestral population size combinations. We conservatively assumed a modern female effective population size of N0 = 12,000,000 (one-10th of the current female population size of central and northern Europe) and two periods of exponential growth: the first after the Upper Paleolithic colonization of Europe 45,000 years ago of female effective population size NUP, sampled from an ancestral African population of constant female effective size NA = 5000; and the second after the Neolithic transition in central Europe 7500 years ago of effective population size NN. We sampled sequences from each simulation according to the numbers (hunter-gatherer n = 20, early farmer n = 25, modern n = 484) and dates (Table 1) of the sequences presented here and found the proportion of simulated FST values that were greater than those observed (PS>O) (14). By exploring all combinations of 100 values for NUP (ranging from 10 to 5000) and 100 values for NN (ranging from 1000 to 100,000), we found that the maximum PS>O value between hunter-gatherers and early farmers was 0.022 (for NUP = 4960 and NN = 1000), and the maximum PS>O value between hunter-gatherers and modern central Europeans was 0.028 (for NUP = 3560 and NN = 1000). Most PS>O values were considerably lower (Fig. 2). These results allow us to reject direct continuity between hunter-gatherers and early farmers, and between hunter-gatherers and modern Europeans.
 
Table 1 Stone Age individuals and their mtDNA results. A, DNA of the archaeologists available for comparison; D, diagenetical analysis; M, multiple extractions and number of these; C, clones of the hypervariable segment 1 and number of these; N, positive amplification of nuclear DNA; Rf, restriction fragment length polymorphism analysis; SNP, single-nucleotide polymorphisms from the coding region of mtDNA obtained by means of multiplex amplification; BP, before the present; SQ., ^. The mtDNA was sequenced from nucleotide position (np) 15997 to np 16409. mtDNA positions are numbered according to the revised Cambridge reference sequence (22), minus 16,000. Fourteen individuals did not yield results (table S1), whereas for two individuals the mtDNA sequences were not determined (n.d.) and thus not considered in the AMOVA analysis and simulations.


View larger version:

Fig. 2 Probabilities of obtaining observed genetic differences, as measured by FST, between (A) hunter-gatherers and LBK early farmers, (B) hunter-gatherers and modern Europeans, and (C) LBK early farmers and modern Europeans, across a range of assumed ancestral population size combinations. Two phases of exponential growth were considered, the first after the initial colonization of Europe 45,000 years ago, of assumed effective female population size NUP (y axis), and ending when farming began in central Europe 7500 years ago, when the assumed effective female population size was NN (x axis); and the second leading up to the present, when the assumed effective female population size is 12 million. The initial colonizers of Europe were sampled from a constant ancestral African population of 5000 effective females. The FST values are those observed from the data presented in this study. Black shaded areas indicate probabilities >0.05.
 
When we considered continuity between early farmers and modern Europeans, we did identify ancestral population size combinations where PS>O > 0.05 (black shaded area in Fig. 2C). Thus, there are demographic conditions under which the observed genetic differences between early European farmers and modern Europeans can be explained by assuming population continuity. Those conditions include assuming NN < 3000, an effective female population size that may be considered implausibly low and is certainly lower than the current archaeological census estimates of 124,000 (16). However, we note that (i) ancestral population sizes are notoriously difficult to estimate from archaeological data, and (ii) the relationship between effective and census population size is dependent on unknown factors, including mating systems and population substructure.
Most modern European mtDNA lineages can be assigned to one of the following clades or haplogroups: H, V, U (including K), J, or T, all deriving from clade R; or I, W, or X, the descendants of clade N. Although some subclades, such as U5, are fairly specific to Europe, most are shared with adjacent areas of Asia and North Africa and are of uncertain antiquity in Europe. We are therefore cautious about treating specific clades as markers of particular past population groups or demographic episodes (17). Nonetheless, it is intriguing to note that 82% of our 22 hunter-gatherer individuals carried clade U (14 U5, 2 U4, and 2 unspecified U types; Table 1). A high incidence of U types (particularly those belonging to the U5 subclade) in Stone Age Europeans has been inferred from modern mtDNA (7), but the frequencies found here are surprisingly high. Europeans today have moderate frequencies of U5 types, ranging from about 1 to 5% along the Mediterranean coastline to 5 to 7% in most core European areas, and rising to 10 to 20% in northeastern European Uralic speakers, with a maximum of over 40% in the Scandinavian Saami. U4 types show frequencies between 1 and 5% in most parts of Europe, with Western Europe at the lower end of this range and northeastern Europe and central Asia showing percentages in excess of 7% (13).
The diversity among the hunter-gatherer U types presented here, together with their continued presence over 11 millennia, and the fact that U5 is rare outside Europe, raises the possibility that U types were common by the time of the post-LGM repopulation of central Europe, which started around 23,000 years ago (3). In a previous study, we showed that the early farmers of central Europe carried mainly N1a, but also H, HV, J, K, T, V, and U3 types (11, 12). We found no U5 or U4 types in that early farmer sample. Conversely, no N1a or H types were observed in our hunter-gatherer sample, confirming the genetic distinctiveness of these two ancient population samples. This is particularly surprising as there is clear evidence for some continuity in the material culture between the central European Mesolithic and the earliest settlements of the Neolithic Linearbandkeramik culture (LBK) (18). Thus, it seems that despite the exchange of stone artifacts, genetic exchange between both groups, at least on the female side, was initially limited. The only exception is the site Ostorf (northern Germany), where two individuals carried haplogroup T2, which is also found in our LBK sample. We are cautious about interpreting this as a signature of local admixture (17), particularly because the hunter-gatherer and early farmer T2 types belong to different sublineages, but it is notable that Ostorf is culturally a Mesolithic enclave surrounded by Neolithic funnel-beaker farmers and is the only hunter-gatherer site where any non-U mtDNA types were observed (Table 1). Further sampling from such local contexts should shed light on the details of Mesolithic-Neolithic interactions after the arrival of farming. We note that any genetic exchange between hunter-gatherers and early farmers at this site would reduce the overall genetic differentiation between the two groups, so inclusion of this site has, if anything, a conservative effect on our conclusions regarding continuity.
Taken together, our results indicate that the transition to farming in central Europe was accompanied by a substantial influx of people from outside the region who, at least initially, did not mix significantly with the resident female hunter-gatherers. We accept that alternative, more complex demographic scenarios, such as strong local population structure and high group extinction and fission rates, might also explain our data. However, the ubiquity of U types in our hunter-gatherer samples is inconsistent with extensive population structuring and indicates that the demographic processes that shaped the observed patterns of genetic variation extend beyond the local scale.
The extent to which modern Europeans are descended from incoming farmers, their hunter-gatherer forerunners, or later incoming groups remains unresolved. The predominant mtDNA types found in the ancient samples considered in this study are found in modern Europeans, but at considerably lower frequencies, suggesting that the diversity observed today cannot be explained by admixture between hunter-gatherers and early farmers alone. If this is the case, then subsequent dilution through migration and admixture, after the arrival of the first farmers, would need to be invoked, implying multiple episodes of population turnover, which are not necessarily observable in the archaeological record. This, in turn, would mean that the classic model of European ancestry components (contrasting hunter-gatherers with early Neolithic farming pioneers) requires revision.
The geographic origin of the demographic processes that brought the early farmer mtDNA types to central Europe now becomes a major question. On the one hand, all of the early farmer remains analyzed here are associated with the LBK culture of central Europe. Based on ceramic typology, the LBK culture is thought to have originated in present-day western Hungary and southwestern Slovakia, with a possible predecessor in the southeast European Starçevo-Kris culture (19, 20). These cultural source locations may provide the most plausible origins or routes for the geographic spread of the early farmers, considering that the LBK was the first major farming culture in central and northern Europe and is archaeologically attested to have disseminated over five centuries and covered nearly a million square kilometers. Alternatively, the farmers’ mtDNA types may have an origin closer to the Neolithic core zone in southwestern Asia. Further ancient DNA analysis of early farmer samples from southeastern Europe and Anatolia will be required to resolve this question.
 
....so viel über die Wurzel der Agrarkultur in Thessalien....

Die Studie wurde von Institut für Genetik in Mainz durchgeführt in Zusammenarbeit mit Kollegen aus Estland und Australien.
 
Zuletzt bearbeitet von einem Moderator:
das hat was zu tun wenn man die konklusionen genau liest. alle farmer gehörten der bandkeramik kultur und wie man weißt, diese kultur hat als wurzel die starcevo cris und cucuteni kultur aus südosteuropa - siehe " die donauzivilisation" H Haarmann.
 
es ist eine antwort für dieter. scholastisch gesehen stimmt dass die agrarkultur sich von thessalien sich verbreitet hat, meinung welche heute als utopisch gilt. die genetik zeigt eine andere variante welche selbstversändlich von scholastiker noch lange zeit inakzeptabel sein wird.

im bezug auf die knochenfrage, einfach prof rodewald am institut für humangenetik in hamburg anrufen und die ergebnisse der paläogenetischen untersuchungen mit knochen aus rumänien abfragen, ergebnisse welche dann die kontinuität vielleicht nicht mehr als frage sodern als tatsache ins licht stellt. ich bin kein historiker sondern mediziner. ich mag spekulationen nicht, aber auch scholastische thesen kann ich auch nicht als axiomen bewerten

....und waren nicht alle die andere meinungen hatten Abenteuern....?
 
Zuletzt bearbeitet von einem Moderator:
es ist eine antwort für dieter. scholastisch gesehen stimmt dass die agrarkultur sich von thessalien sich verbreitet hat, meinung welche heute als utopisch gilt. die genetik zeigt eine andere variante welche selbstversändlich von scholastiker noch lange zeit inakzeptabel sein wird.

Thessalien ist nicht der Ursprung der frühneolithischen Kulturen, sondern lediglich eine von mehreren Stationen. Ursprung der frühen Ackerbauern ist Vorderasien. Von dort aus breiteten sich jungsteinzeitliche Kulturen über Kleinasien, Griechenland und den Balkan bis Zentral- und Nordeuropa aus.

Die Ausbreitungswege und entsprechende chronologische Daten sind seit langer Zeit archäologisch gut belegt und finden ihren Niederchlag unter anderem in der Sesklo-, Vinca-, Starcevo, Tripolje- und Linearbandkeramischen Kultur (LBK).

Richtig ist allerdings, dass die Proto-Sesklokultur in Thessalien zu den frühesten Ackerbaukulturen auf europäischem Boden zählt und vermutlich schon im 7. Jahrtausend v. Chr. einsetzt. Sesklo ? Wikipedia
 
Das dakische Substrat im rumänischen Wortschatz ist umstritten. Nach einigen Schätzungen sollen rund 180 Wörter als dakisch identifiziert sein, nach anderen nur etwa 30.
 
Das ist richtig. Hasdeu und Russu haben da wohl recht unterschiedliche Auffasungen zu gehabt und ich weiß nicht mal ob die noch aktuell sind.

Mein Opa, Gott hab ihn seelig, war Phililoge und hat auch dahingehend geforscht. Es müssten noch einiges an Aufzeichnungen in unserem Hause herumliegen.
Wenn ich dieses Jahr in Rumänien bin, werd ich mir mal paar Tage Zeit nehmen und das durchforsten. So weit ich weiß hat er speziell in dne Dialekten der Moldau geforscht. Hab mich aber viel zu wenig damit beschäftigt zugegeben.
 
Thorpe 1999. Hinweise auf Agrargesellschaft in Lepinski Vir am Eisernen Tor gefunden, 8. Jahrtausend. Der Weg wie man aus geologischer Sicht heute weißt, war nicht der Küste entlang sondern über Bosporus. Damals hier war keine Wasserstrasse (Ryan et al : Konferenz Italien 2002) sondern Land. Also : Anatolien, SO Europa uns dann Griechenland etc.
 
Thorpe 1999. Hinweise auf Agrargesellschaft in Lepinski Vir am Eisernen Tor gefunden, 8. Jahrtausend. Der Weg wie man aus geologischer Sicht heute weißt, war nicht der Küste entlang sondern über Bosporus. Damals hier war keine Wasserstrasse (Ryan et al : Konferenz Italien 2002) sondern Land. Also : Anatolien, SO Europa uns dann Griechenland etc.

Diese Feststellung hat niemand bestritten. Allerdings ging der andere Ausbreitungsweg der frühen Ackerbauern über Afrika nach Spanien und Westeuropa durchaus entlang der Küste des Mittelmeers.
 
Zurück
Oben